Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of n*(1+(1+n)^2)/((1+n)*(1+n^2))
Limit of -2+|-2+x|/x
Limit of (1+x^2+9*x)/(-5+2*x+7*x^2)
Limit of (1+x^2)^(3/2)/(1+2*x)
Integral of d{x}
:
sqrt(5+x^2)
Identical expressions
sqrt(five +x^ two)
square root of (5 plus x squared )
square root of (five plus x to the power of two)
√(5+x^2)
sqrt(5+x2)
sqrt5+x2
sqrt(5+x²)
sqrt(5+x to the power of 2)
sqrt5+x^2
Similar expressions
sqrt(5-x^2)
Limit of the function
/
sqrt(5+x^2)
Limit of the function sqrt(5+x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
________ / 2 lim \/ 5 + x x->oo
lim
x
→
∞
x
2
+
5
\lim_{x \to \infty} \sqrt{x^{2} + 5}
x
→
∞
lim
x
2
+
5
Limit(sqrt(5 + x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
20
Plot the graph
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
x
2
+
5
=
∞
\lim_{x \to \infty} \sqrt{x^{2} + 5} = \infty
x
→
∞
lim
x
2
+
5
=
∞
lim
x
→
0
−
x
2
+
5
=
5
\lim_{x \to 0^-} \sqrt{x^{2} + 5} = \sqrt{5}
x
→
0
−
lim
x
2
+
5
=
5
More at x→0 from the left
lim
x
→
0
+
x
2
+
5
=
5
\lim_{x \to 0^+} \sqrt{x^{2} + 5} = \sqrt{5}
x
→
0
+
lim
x
2
+
5
=
5
More at x→0 from the right
lim
x
→
1
−
x
2
+
5
=
6
\lim_{x \to 1^-} \sqrt{x^{2} + 5} = \sqrt{6}
x
→
1
−
lim
x
2
+
5
=
6
More at x→1 from the left
lim
x
→
1
+
x
2
+
5
=
6
\lim_{x \to 1^+} \sqrt{x^{2} + 5} = \sqrt{6}
x
→
1
+
lim
x
2
+
5
=
6
More at x→1 from the right
lim
x
→
−
∞
x
2
+
5
=
∞
\lim_{x \to -\infty} \sqrt{x^{2} + 5} = \infty
x
→
−
∞
lim
x
2
+
5
=
∞
More at x→-oo
The graph