Mister Exam

Other calculators:


sqrt(5+x^2)

Limit of the function sqrt(5+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        ________
       /      2 
 lim \/  5 + x  
x->oo           
limxx2+5\lim_{x \to \infty} \sqrt{x^{2} + 5}
Limit(sqrt(5 + x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010020
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limxx2+5=\lim_{x \to \infty} \sqrt{x^{2} + 5} = \infty
limx0x2+5=5\lim_{x \to 0^-} \sqrt{x^{2} + 5} = \sqrt{5}
More at x→0 from the left
limx0+x2+5=5\lim_{x \to 0^+} \sqrt{x^{2} + 5} = \sqrt{5}
More at x→0 from the right
limx1x2+5=6\lim_{x \to 1^-} \sqrt{x^{2} + 5} = \sqrt{6}
More at x→1 from the left
limx1+x2+5=6\lim_{x \to 1^+} \sqrt{x^{2} + 5} = \sqrt{6}
More at x→1 from the right
limxx2+5=\lim_{x \to -\infty} \sqrt{x^{2} + 5} = \infty
More at x→-oo
The graph
Limit of the function sqrt(5+x^2)