Mister Exam

Other calculators:


sqrt(5+x^2)

Limit of the function sqrt(5+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        ________
       /      2 
 lim \/  5 + x  
x->oo           
$$\lim_{x \to \infty} \sqrt{x^{2} + 5}$$
Limit(sqrt(5 + x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \sqrt{x^{2} + 5} = \infty$$
$$\lim_{x \to 0^-} \sqrt{x^{2} + 5} = \sqrt{5}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{x^{2} + 5} = \sqrt{5}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{x^{2} + 5} = \sqrt{6}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{x^{2} + 5} = \sqrt{6}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{x^{2} + 5} = \infty$$
More at x→-oo
The graph
Limit of the function sqrt(5+x^2)