Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 2^(-x)*factorial(x)
Limit of n2*(5/2+n/2)
Limit of ((-4+3*x)/(2+3*x))^(2*x)
Limit of (2+n)^2*(1+2*n)/(n^2*(3+2*n))
Sum of series
:
sqrt(a)
Identical expressions
sqrt(a)
square root of (a)
√(a)
sqrta
Similar expressions
(sqrt(a+b*x)-sqrt(3))/x
log(2+sqrt(atan(x)*sin(1/x)))
sqrt(a+x)-sqrt(2)
(sqrt(x-b)-sqrt(a-b))/(x^2-a^2)
Limit of the function
/
sqrt(a)
Limit of the function sqrt(a)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
___ lim \/ a a->oo
lim
a
→
∞
a
\lim_{a \to \infty} \sqrt{a}
a
→
∞
lim
a
Limit(sqrt(a), a, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
5
Plot the graph
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
Other limits a→0, -oo, +oo, 1
lim
a
→
∞
a
=
∞
\lim_{a \to \infty} \sqrt{a} = \infty
a
→
∞
lim
a
=
∞
lim
a
→
0
−
a
=
0
\lim_{a \to 0^-} \sqrt{a} = 0
a
→
0
−
lim
a
=
0
More at a→0 from the left
lim
a
→
0
+
a
=
0
\lim_{a \to 0^+} \sqrt{a} = 0
a
→
0
+
lim
a
=
0
More at a→0 from the right
lim
a
→
1
−
a
=
1
\lim_{a \to 1^-} \sqrt{a} = 1
a
→
1
−
lim
a
=
1
More at a→1 from the left
lim
a
→
1
+
a
=
1
\lim_{a \to 1^+} \sqrt{a} = 1
a
→
1
+
lim
a
=
1
More at a→1 from the right
lim
a
→
−
∞
a
=
∞
i
\lim_{a \to -\infty} \sqrt{a} = \infty i
a
→
−
∞
lim
a
=
∞
i
More at a→-oo
The graph