Mister Exam

Other calculators:


16*x

Limit of the function 16*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (16*x)
x->oo      
limx(16x)\lim_{x \to \infty}\left(16 x\right)
Limit(16*x, x, oo, dir='-')
Detail solution
Let's take the limit
limx(16x)\lim_{x \to \infty}\left(16 x\right)
Let's divide numerator and denominator by x:
limx(16x)\lim_{x \to \infty}\left(16 x\right) =
limx11161x\lim_{x \to \infty} \frac{1}{\frac{1}{16} \frac{1}{x}}
Do Replacement
u=1xu = \frac{1}{x}
then
limx11161x=limu0+(16u)\lim_{x \to \infty} \frac{1}{\frac{1}{16} \frac{1}{x}} = \lim_{u \to 0^+}\left(\frac{16}{u}\right)
=
160=\frac{16}{0} = \infty

The final answer:
limx(16x)=\lim_{x \to \infty}\left(16 x\right) = \infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-500500
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(16x)=\lim_{x \to \infty}\left(16 x\right) = \infty
limx0(16x)=0\lim_{x \to 0^-}\left(16 x\right) = 0
More at x→0 from the left
limx0+(16x)=0\lim_{x \to 0^+}\left(16 x\right) = 0
More at x→0 from the right
limx1(16x)=16\lim_{x \to 1^-}\left(16 x\right) = 16
More at x→1 from the left
limx1+(16x)=16\lim_{x \to 1^+}\left(16 x\right) = 16
More at x→1 from the right
limx(16x)=\lim_{x \to -\infty}\left(16 x\right) = -\infty
More at x→-oo
The graph
Limit of the function 16*x