Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1-cos(a*x))/(1-cos(b*x))
Limit of cot(x)*log(x+e^x)
Limit of (x^2-x)/(-1+x^2)
Limit of 6/x
Derivative of
:
6/x
Integral of d{x}
:
6/x
Graphing y =
:
6/x
Identical expressions
six /x
6 divide by x
six divide by x
Limit of the function
/
6/x
Limit of the function 6/x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/6\ lim |-| x->oo\x/
$$\lim_{x \to \infty}\left(\frac{6}{x}\right)$$
Limit(6/x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{6}{x}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(\frac{6}{x}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{6 \frac{1}{x}}{1}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{6 \frac{1}{x}}{1}\right) = \lim_{u \to 0^+}\left(6 u\right)$$
=
$$0 \cdot 6 = 0$$
The final answer:
$$\lim_{x \to \infty}\left(\frac{6}{x}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{6}{x}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{6}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{6}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{6}{x}\right) = 6$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{6}{x}\right) = 6$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{6}{x}\right) = 0$$
More at x→-oo
The graph