Mister Exam

Other calculators:


6/x

Limit of the function 6/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /6\
 lim |-|
x->oo\x/
limx(6x)\lim_{x \to \infty}\left(\frac{6}{x}\right)
Limit(6/x, x, oo, dir='-')
Detail solution
Let's take the limit
limx(6x)\lim_{x \to \infty}\left(\frac{6}{x}\right)
Let's divide numerator and denominator by x:
limx(6x)\lim_{x \to \infty}\left(\frac{6}{x}\right) =
limx(61x1)\lim_{x \to \infty}\left(\frac{6 \frac{1}{x}}{1}\right)
Do Replacement
u=1xu = \frac{1}{x}
then
limx(61x1)=limu0+(6u)\lim_{x \to \infty}\left(\frac{6 \frac{1}{x}}{1}\right) = \lim_{u \to 0^+}\left(6 u\right)
=
06=00 \cdot 6 = 0

The final answer:
limx(6x)=0\lim_{x \to \infty}\left(\frac{6}{x}\right) = 0
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-100100
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(6x)=0\lim_{x \to \infty}\left(\frac{6}{x}\right) = 0
limx0(6x)=\lim_{x \to 0^-}\left(\frac{6}{x}\right) = -\infty
More at x→0 from the left
limx0+(6x)=\lim_{x \to 0^+}\left(\frac{6}{x}\right) = \infty
More at x→0 from the right
limx1(6x)=6\lim_{x \to 1^-}\left(\frac{6}{x}\right) = 6
More at x→1 from the left
limx1+(6x)=6\lim_{x \to 1^+}\left(\frac{6}{x}\right) = 6
More at x→1 from the right
limx(6x)=0\lim_{x \to -\infty}\left(\frac{6}{x}\right) = 0
More at x→-oo
The graph
Limit of the function 6/x