$$\lim_{x \to \infty} \cosh{\left(1 \cdot \frac{1}{x} \right)} = 1$$ $$\lim_{x \to 0^-} \cosh{\left(1 \cdot \frac{1}{x} \right)} = \infty$$ More at x→0 from the left $$\lim_{x \to 0^+} \cosh{\left(1 \cdot \frac{1}{x} \right)} = \infty$$ More at x→0 from the right $$\lim_{x \to 1^-} \cosh{\left(1 \cdot \frac{1}{x} \right)} = \cosh{\left(1 \right)}$$ More at x→1 from the left $$\lim_{x \to 1^+} \cosh{\left(1 \cdot \frac{1}{x} \right)} = \cosh{\left(1 \right)}$$ More at x→1 from the right $$\lim_{x \to -\infty} \cosh{\left(1 \cdot \frac{1}{x} \right)} = 1$$ More at x→-oo