Mister Exam

Other calculators:


sin(x)^cos(x)

Limit of the function sin(x)^cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        cos(x)   
 lim sin      (x)
x->0+            
$$\lim_{x \to 0^+} \sin^{\cos{\left(x \right)}}{\left(x \right)}$$
Limit(sin(x)^cos(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
        cos(x)   
 lim sin      (x)
x->0+            
$$\lim_{x \to 0^+} \sin^{\cos{\left(x \right)}}{\left(x \right)}$$
0
$$0$$
= 0.000243262206402705
        cos(x)   
 lim sin      (x)
x->0-            
$$\lim_{x \to 0^-} \sin^{\cos{\left(x \right)}}{\left(x \right)}$$
0
$$0$$
= (-1.87404882582739e-11 + 2.92394582441919e-17j)
= (-1.87404882582739e-11 + 2.92394582441919e-17j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \sin^{\cos{\left(x \right)}}{\left(x \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sin^{\cos{\left(x \right)}}{\left(x \right)} = 0$$
$$\lim_{x \to \infty} \sin^{\cos{\left(x \right)}}{\left(x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \sin^{\cos{\left(x \right)}}{\left(x \right)} = \sin^{\cos{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sin^{\cos{\left(x \right)}}{\left(x \right)} = \sin^{\cos{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sin^{\cos{\left(x \right)}}{\left(x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
0.000243262206402705
0.000243262206402705
The graph
Limit of the function sin(x)^cos(x)