$$\lim_{x \to 0^-} \sin^{\cos{\left(x \right)}}{\left(x \right)} = 0$$
More at x→0 from the left$$\lim_{x \to 0^+} \sin^{\cos{\left(x \right)}}{\left(x \right)} = 0$$
$$\lim_{x \to \infty} \sin^{\cos{\left(x \right)}}{\left(x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo$$\lim_{x \to 1^-} \sin^{\cos{\left(x \right)}}{\left(x \right)} = \sin^{\cos{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+} \sin^{\cos{\left(x \right)}}{\left(x \right)} = \sin^{\cos{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty} \sin^{\cos{\left(x \right)}}{\left(x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo