Mister Exam

Other calculators:


sin(2*x)/sin(x)^2
  • How to use it?

  • Limit of the function:
  • Limit of x*exp(x) Limit of x*exp(x)
  • Limit of sin(2*x)/sin(x)^2 Limit of sin(2*x)/sin(x)^2
  • Limit of ((1+2*x)/(-1+x))^x Limit of ((1+2*x)/(-1+x))^x
  • Limit of exp(n) Limit of exp(n)
  • Identical expressions

  • sin(two *x)/sin(x)^ two
  • sinus of (2 multiply by x) divide by sinus of (x) squared
  • sinus of (two multiply by x) divide by sinus of (x) to the power of two
  • sin(2*x)/sin(x)2
  • sin2*x/sinx2
  • sin(2*x)/sin(x)²
  • sin(2*x)/sin(x) to the power of 2
  • sin(2x)/sin(x)^2
  • sin(2x)/sin(x)2
  • sin2x/sinx2
  • sin2x/sinx^2
  • sin(2*x) divide by sin(x)^2
  • Similar expressions

  • sin(2*x)/sinx^2

Limit of the function sin(2*x)/sin(x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(2*x)\
 lim |--------|
x->0+|   2    |
     \sin (x) /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right)$$
Limit(sin(2*x)/sin(x)^2, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(2 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \sin^{2}{\left(x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(2 x \right)}}{\frac{d}{d x} \sin^{2}{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(2 x \right)}}{\sin{\left(x \right)} \cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+} \frac{1}{\sin{\left(x \right)}}$$
=
$$\lim_{x \to 0^+} \frac{1}{\sin{\left(x \right)}}$$
=
$$\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right) = \frac{\sin{\left(2 \right)}}{\sin^{2}{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right) = \frac{\sin{\left(2 \right)}}{\sin^{2}{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right)$$
More at x→-oo
One‐sided limits [src]
     /sin(2*x)\
 lim |--------|
x->0+|   2    |
     \sin (x) /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right)$$
oo
$$\infty$$
= 301.995584976054
     /sin(2*x)\
 lim |--------|
x->0-|   2    |
     \sin (x) /
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(2 x \right)}}{\sin^{2}{\left(x \right)}}\right)$$
-oo
$$-\infty$$
= -301.995584976054
= -301.995584976054
Numerical answer [src]
301.995584976054
301.995584976054
The graph
Limit of the function sin(2*x)/sin(x)^2