Mister Exam

Other calculators:


sin(2*x)

Limit of the function sin(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim sin(2*x)
x->0+        
$$\lim_{x \to 0^+} \sin{\left(2 x \right)}$$
Limit(sin(2*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \sin{\left(2 x \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sin{\left(2 x \right)} = 0$$
$$\lim_{x \to \infty} \sin{\left(2 x \right)} = \left\langle -1, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \sin{\left(2 x \right)} = \sin{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sin{\left(2 x \right)} = \sin{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sin{\left(2 x \right)} = \left\langle -1, 1\right\rangle$$
More at x→-oo
One‐sided limits [src]
 lim sin(2*x)
x->0+        
$$\lim_{x \to 0^+} \sin{\left(2 x \right)}$$
0
$$0$$
= 2.03873400266658e-31
 lim sin(2*x)
x->0-        
$$\lim_{x \to 0^-} \sin{\left(2 x \right)}$$
0
$$0$$
= -2.03873400266658e-31
= -2.03873400266658e-31
Numerical answer [src]
2.03873400266658e-31
2.03873400266658e-31
The graph
Limit of the function sin(2*x)