Mister Exam

Other calculators:


(1-cos(x))^x

Limit of the function (1-cos(x))^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 x
 lim (1 - cos(x)) 
x->0+             
$$\lim_{x \to 0^+} \left(1 - \cos{\left(x \right)}\right)^{x}$$
Limit((1 - cos(x))^x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
                 x
 lim (1 - cos(x)) 
x->0+             
$$\lim_{x \to 0^+} \left(1 - \cos{\left(x \right)}\right)^{x}$$
1
$$1$$
= 0.9960332343068
                 x
 lim (1 - cos(x)) 
x->0-             
$$\lim_{x \to 0^-} \left(1 - \cos{\left(x \right)}\right)^{x}$$
1
$$1$$
= 1.00407235657689
= 1.00407235657689
Numerical answer [src]
0.9960332343068
0.9960332343068
The graph
Limit of the function (1-cos(x))^x