Mister Exam

Limit of the function sin(2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim sin(2)
x->0+      
$$\lim_{x \to 0^+} \sin{\left(2 \right)}$$
Limit(sin(2), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
sin(2)
$$\sin{\left(2 \right)}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \sin{\left(2 \right)} = \sin{\left(2 \right)}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sin{\left(2 \right)} = \sin{\left(2 \right)}$$
$$\lim_{x \to \infty} \sin{\left(2 \right)} = \sin{\left(2 \right)}$$
More at x→oo
$$\lim_{x \to 1^-} \sin{\left(2 \right)} = \sin{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sin{\left(2 \right)} = \sin{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sin{\left(2 \right)} = \sin{\left(2 \right)}$$
More at x→-oo
One‐sided limits [src]
 lim sin(2)
x->0+      
$$\lim_{x \to 0^+} \sin{\left(2 \right)}$$
sin(2)
$$\sin{\left(2 \right)}$$
= 0.909297426825682
 lim sin(2)
x->0-      
$$\lim_{x \to 0^-} \sin{\left(2 \right)}$$
sin(2)
$$\sin{\left(2 \right)}$$
= 0.909297426825682
= 0.909297426825682
Numerical answer [src]
0.909297426825682
0.909297426825682
The graph
Limit of the function sin(2)