Mister Exam

Other calculators:


tan(6*x)/sin(2*x)

Limit of the function tan(6*x)/sin(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /tan(6*x)\
 lim |--------|
x->0+\sin(2*x)/
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{\sin{\left(2 x \right)}}\right)$$
Limit(tan(6*x)/sin(2*x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \tan{\left(6 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \sin{\left(2 x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{\sin{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \tan{\left(6 x \right)}}{\frac{d}{d x} \sin{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{6 \tan^{2}{\left(6 x \right)} + 6}{2 \cos{\left(2 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(3 \tan^{2}{\left(6 x \right)} + 3\right)$$
=
$$\lim_{x \to 0^+}\left(3 \tan^{2}{\left(6 x \right)} + 3\right)$$
=
$$3$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
3
$$3$$
One‐sided limits [src]
     /tan(6*x)\
 lim |--------|
x->0+\sin(2*x)/
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{\sin{\left(2 x \right)}}\right)$$
3
$$3$$
= 3.0
     /tan(6*x)\
 lim |--------|
x->0-\sin(2*x)/
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(6 x \right)}}{\sin{\left(2 x \right)}}\right)$$
3
$$3$$
= 3.0
= 3.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(6 x \right)}}{\sin{\left(2 x \right)}}\right) = 3$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{\sin{\left(2 x \right)}}\right) = 3$$
$$\lim_{x \to \infty}\left(\frac{\tan{\left(6 x \right)}}{\sin{\left(2 x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\tan{\left(6 x \right)}}{\sin{\left(2 x \right)}}\right) = \frac{\tan{\left(6 \right)}}{\sin{\left(2 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\tan{\left(6 x \right)}}{\sin{\left(2 x \right)}}\right) = \frac{\tan{\left(6 \right)}}{\sin{\left(2 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\tan{\left(6 x \right)}}{\sin{\left(2 x \right)}}\right)$$
More at x→-oo
Numerical answer [src]
3.0
3.0
The graph
Limit of the function tan(6*x)/sin(2*x)