Mister Exam

Other calculators:


tan(1/x)/x

Limit of the function tan(1/x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   /1\\
     |tan|-||
     |   \x/|
 lim |------|
x->oo\  x   /
$$\lim_{x \to \infty}\left(\frac{\tan{\left(\frac{1}{x} \right)}}{x}\right)$$
Limit(tan(1/x)/x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\tan{\left(\frac{1}{x} \right)}}{x}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(\frac{1}{x} \right)}}{x}\right)$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(\frac{1}{x} \right)}}{x}\right)$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\tan{\left(\frac{1}{x} \right)}}{x}\right) = \tan{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\tan{\left(\frac{1}{x} \right)}}{x}\right) = \tan{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\tan{\left(\frac{1}{x} \right)}}{x}\right) = 0$$
More at x→-oo
Rapid solution [src]
0
$$0$$
The graph
Limit of the function tan(1/x)/x