Mister Exam

Other calculators:


sin(pi*n/3)

Limit of the function sin(pi*n/3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /pi*n\
 lim sin|----|
n->oo   \ 3  /
$$\lim_{n \to \infty} \sin{\left(\frac{\pi n}{3} \right)}$$
Limit(sin((pi*n)/3), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} \sin{\left(\frac{\pi n}{3} \right)} = \left\langle -1, 1\right\rangle$$
$$\lim_{n \to 0^-} \sin{\left(\frac{\pi n}{3} \right)} = 0$$
More at n→0 from the left
$$\lim_{n \to 0^+} \sin{\left(\frac{\pi n}{3} \right)} = 0$$
More at n→0 from the right
$$\lim_{n \to 1^-} \sin{\left(\frac{\pi n}{3} \right)} = \frac{\sqrt{3}}{2}$$
More at n→1 from the left
$$\lim_{n \to 1^+} \sin{\left(\frac{\pi n}{3} \right)} = \frac{\sqrt{3}}{2}$$
More at n→1 from the right
$$\lim_{n \to -\infty} \sin{\left(\frac{\pi n}{3} \right)} = \left\langle -1, 1\right\rangle$$
More at n→-oo
The graph
Limit of the function sin(pi*n/3)