$$\lim_{n \to \infty} \sin{\left(\frac{\pi n}{3} \right)} = \left\langle -1, 1\right\rangle$$
$$\lim_{n \to 0^-} \sin{\left(\frac{\pi n}{3} \right)} = 0$$
More at n→0 from the left$$\lim_{n \to 0^+} \sin{\left(\frac{\pi n}{3} \right)} = 0$$
More at n→0 from the right$$\lim_{n \to 1^-} \sin{\left(\frac{\pi n}{3} \right)} = \frac{\sqrt{3}}{2}$$
More at n→1 from the left$$\lim_{n \to 1^+} \sin{\left(\frac{\pi n}{3} \right)} = \frac{\sqrt{3}}{2}$$
More at n→1 from the right$$\lim_{n \to -\infty} \sin{\left(\frac{\pi n}{3} \right)} = \left\langle -1, 1\right\rangle$$
More at n→-oo