$$\lim_{z \to 0^-}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = \left\langle -1, 1\right\rangle$$
More at z→0 from the left$$\lim_{z \to 0^+}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = \left\langle -1, 1\right\rangle$$
$$\lim_{z \to \infty}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = 0$$
More at z→oo$$\lim_{z \to 1^-}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = \infty$$
More at z→1 from the left$$\lim_{z \to 1^+}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = -\infty$$
More at z→1 from the right$$\lim_{z \to -\infty}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = 0$$
More at z→-oo