Mister Exam

Other calculators:


sin(1/z)/(1-z)

Limit of the function sin(1/z)/(1-z)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   /1\\
     |sin|-||
     |   \z/|
 lim |------|
z->0+\1 - z /
$$\lim_{z \to 0^+}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right)$$
Limit(sin(1/z)/(1 - z), z, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
One‐sided limits [src]
     /   /1\\
     |sin|-||
     |   \z/|
 lim |------|
z->0+\1 - z /
$$\lim_{z \to 0^+}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right)$$
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
= 1.32571003602926e-20
     /   /1\\
     |sin|-||
     |   \z/|
 lim |------|
z->0-\1 - z /
$$\lim_{z \to 0^-}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right)$$
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
= 7.20187738860025e-19
= 7.20187738860025e-19
Other limits z→0, -oo, +oo, 1
$$\lim_{z \to 0^-}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = \left\langle -1, 1\right\rangle$$
More at z→0 from the left
$$\lim_{z \to 0^+}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = \left\langle -1, 1\right\rangle$$
$$\lim_{z \to \infty}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = 0$$
More at z→oo
$$\lim_{z \to 1^-}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = \infty$$
More at z→1 from the left
$$\lim_{z \to 1^+}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = -\infty$$
More at z→1 from the right
$$\lim_{z \to -\infty}\left(\frac{\sin{\left(\frac{1}{z} \right)}}{1 - z}\right) = 0$$
More at z→-oo
Numerical answer [src]
1.32571003602926e-20
1.32571003602926e-20
The graph
Limit of the function sin(1/z)/(1-z)