Mister Exam

Other calculators:


1/n

Limit of the function 1/n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1
 lim -
n->oon
limn1n\lim_{n \to \infty} \frac{1}{n}
Limit(1/n, n, oo, dir='-')
Detail solution
Let's take the limit
limn1n\lim_{n \to \infty} \frac{1}{n}
Let's divide numerator and denominator by n:
limn1n\lim_{n \to \infty} \frac{1}{n} =
limn(1n)\lim_{n \to \infty}\left(\frac{1}{n}\right)
Do Replacement
u=1nu = \frac{1}{n}
then
limn(1n)=limu0+u\lim_{n \to \infty}\left(\frac{1}{n}\right) = \lim_{u \to 0^+} u
=
0=00 = 0

The final answer:
limn1n=0\lim_{n \to \infty} \frac{1}{n} = 0
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Rapid solution [src]
0
00
Other limits n→0, -oo, +oo, 1
limn1n=0\lim_{n \to \infty} \frac{1}{n} = 0
limn01n=\lim_{n \to 0^-} \frac{1}{n} = -\infty
More at n→0 from the left
limn0+1n=\lim_{n \to 0^+} \frac{1}{n} = \infty
More at n→0 from the right
limn11n=1\lim_{n \to 1^-} \frac{1}{n} = 1
More at n→1 from the left
limn1+1n=1\lim_{n \to 1^+} \frac{1}{n} = 1
More at n→1 from the right
limn1n=0\lim_{n \to -\infty} \frac{1}{n} = 0
More at n→-oo
The graph
Limit of the function 1/n