Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-6*tan(x)+2*tan(3*x))/(-atan(3*x)+3*atan(x))
Limit of sin(n*x)
Limit of -4
Limit of 1/n
Sum of series
:
1/n
Graphing y =
:
1/n
Identical expressions
one /n
1 divide by n
one divide by n
Similar expressions
1/(n*log(n))
Limit of the function
/
1/n
Limit of the function 1/n
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim - n->oon
$$\lim_{n \to \infty} \frac{1}{n}$$
Limit(1/n, n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty} \frac{1}{n}$$
Let's divide numerator and denominator by n:
$$\lim_{n \to \infty} \frac{1}{n}$$ =
$$\lim_{n \to \infty}\left(\frac{1}{n}\right)$$
Do Replacement
$$u = \frac{1}{n}$$
then
$$\lim_{n \to \infty}\left(\frac{1}{n}\right) = \lim_{u \to 0^+} u$$
=
$$0 = 0$$
The final answer:
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
$$\lim_{n \to 0^-} \frac{1}{n} = -\infty$$
More at n→0 from the left
$$\lim_{n \to 0^+} \frac{1}{n} = \infty$$
More at n→0 from the right
$$\lim_{n \to 1^-} \frac{1}{n} = 1$$
More at n→1 from the left
$$\lim_{n \to 1^+} \frac{1}{n} = 1$$
More at n→1 from the right
$$\lim_{n \to -\infty} \frac{1}{n} = 0$$
More at n→-oo
The graph