Mister Exam

Other calculators:


sin(1/x)^(1/x)

Limit of the function sin(1/x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         __________
        /    /  1\ 
 lim x /  sin|1*-| 
x->oo\/      \  x/ 
limxsin11x(11x)\lim_{x \to \infty} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)}
Limit(sin(1/x)^(1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101002500
Rapid solution [src]
1
11
Other limits x→0, -oo, +oo, 1
limxsin11x(11x)=1\lim_{x \to \infty} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = 1
limx0sin11x(11x)\lim_{x \to 0^-} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)}
More at x→0 from the left
limx0+sin11x(11x)\lim_{x \to 0^+} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)}
More at x→0 from the right
limx1sin11x(11x)=sin(1)\lim_{x \to 1^-} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = \sin{\left(1 \right)}
More at x→1 from the left
limx1+sin11x(11x)=sin(1)\lim_{x \to 1^+} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = \sin{\left(1 \right)}
More at x→1 from the right
limxsin11x(11x)=1\lim_{x \to -\infty} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = 1
More at x→-oo
The graph
Limit of the function sin(1/x)^(1/x)