Mister Exam

Other calculators:


sin(1/x)^(1/x)

Limit of the function sin(1/x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         __________
        /    /  1\ 
 lim x /  sin|1*-| 
x->oo\/      \  x/ 
$$\lim_{x \to \infty} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)}$$
Limit(sin(1/x)^(1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = 1$$
$$\lim_{x \to 0^-} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = 1$$
More at x→-oo
The graph
Limit of the function sin(1/x)^(1/x)