$$\lim_{x \to \infty} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = 1$$
$$\lim_{x \to 0^-} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)}$$
More at x→0 from the left$$\lim_{x \to 0^+} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)}$$
More at x→0 from the right$$\lim_{x \to 1^-} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = \sin{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = \sin{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty} \sin^{1 \cdot \frac{1}{x}}{\left(1 \cdot \frac{1}{x} \right)} = 1$$
More at x→-oo