Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-6+x^2-x)/(9+x^2-6*x)
Limit of (9^x-8^x)/asin(3*x)
Limit of -5-2*x^2+8*x
Limit of (-1+x^2)/(1-x)
Sum of series
:
sin(n*x)/n^2
Identical expressions
sin(n*x)/n^ two
sinus of (n multiply by x) divide by n squared
sinus of (n multiply by x) divide by n to the power of two
sin(n*x)/n2
sinn*x/n2
sin(n*x)/n²
sin(n*x)/n to the power of 2
sin(nx)/n^2
sin(nx)/n2
sinnx/n2
sinnx/n^2
sin(n*x) divide by n^2
Limit of the function
/
sin(n*x)/n^2
Limit of the function sin(n*x)/n^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/sin(n*x)\ lim |--------| n->oo| 2 | \ n /
lim
n
→
∞
(
sin
(
n
x
)
n
2
)
\lim_{n \to \infty}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right)
n
→
∞
lim
(
n
2
sin
(
n
x
)
)
Limit(sin(n*x)/n^2, n, oo, dir='-')
Rapid solution
[src]
zoo*x*cos(zoo*x)
∞
~
x
cos
(
∞
~
x
)
\tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}
∞
~
x
cos
(
∞
~
x
)
Expand and simplify
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
(
sin
(
n
x
)
n
2
)
=
∞
~
x
cos
(
∞
~
x
)
\lim_{n \to \infty}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}
n
→
∞
lim
(
n
2
sin
(
n
x
)
)
=
∞
~
x
cos
(
∞
~
x
)
lim
n
→
0
−
(
sin
(
n
x
)
n
2
)
=
−
∞
sign
(
x
)
\lim_{n \to 0^-}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = - \infty \operatorname{sign}{\left(x \right)}
n
→
0
−
lim
(
n
2
sin
(
n
x
)
)
=
−
∞
sign
(
x
)
More at n→0 from the left
lim
n
→
0
+
(
sin
(
n
x
)
n
2
)
=
∞
sign
(
x
)
\lim_{n \to 0^+}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \infty \operatorname{sign}{\left(x \right)}
n
→
0
+
lim
(
n
2
sin
(
n
x
)
)
=
∞
sign
(
x
)
More at n→0 from the right
lim
n
→
1
−
(
sin
(
n
x
)
n
2
)
=
sin
(
x
)
\lim_{n \to 1^-}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \sin{\left(x \right)}
n
→
1
−
lim
(
n
2
sin
(
n
x
)
)
=
sin
(
x
)
More at n→1 from the left
lim
n
→
1
+
(
sin
(
n
x
)
n
2
)
=
sin
(
x
)
\lim_{n \to 1^+}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \sin{\left(x \right)}
n
→
1
+
lim
(
n
2
sin
(
n
x
)
)
=
sin
(
x
)
More at n→1 from the right
lim
n
→
−
∞
(
sin
(
n
x
)
n
2
)
=
∞
~
x
cos
(
∞
~
x
)
\lim_{n \to -\infty}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}
n
→
−
∞
lim
(
n
2
sin
(
n
x
)
)
=
∞
~
x
cos
(
∞
~
x
)
More at n→-oo