$$\lim_{n \to \infty}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}$$
$$\lim_{n \to 0^-}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = - \infty \operatorname{sign}{\left(x \right)}$$
More at n→0 from the left$$\lim_{n \to 0^+}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \infty \operatorname{sign}{\left(x \right)}$$
More at n→0 from the right$$\lim_{n \to 1^-}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \sin{\left(x \right)}$$
More at n→1 from the left$$\lim_{n \to 1^+}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \sin{\left(x \right)}$$
More at n→1 from the right$$\lim_{n \to -\infty}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}$$
More at n→-oo