Mister Exam

Other calculators:

Limit of the function sin(n*x)/n^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(n*x)\
 lim |--------|
n->oo|    2   |
     \   n    /
limn(sin(nx)n2)\lim_{n \to \infty}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right)
Limit(sin(n*x)/n^2, n, oo, dir='-')
Rapid solution [src]
zoo*x*cos(zoo*x)
~xcos(~x)\tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}
Other limits n→0, -oo, +oo, 1
limn(sin(nx)n2)=~xcos(~x)\lim_{n \to \infty}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}
limn0(sin(nx)n2)=sign(x)\lim_{n \to 0^-}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = - \infty \operatorname{sign}{\left(x \right)}
More at n→0 from the left
limn0+(sin(nx)n2)=sign(x)\lim_{n \to 0^+}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \infty \operatorname{sign}{\left(x \right)}
More at n→0 from the right
limn1(sin(nx)n2)=sin(x)\lim_{n \to 1^-}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \sin{\left(x \right)}
More at n→1 from the left
limn1+(sin(nx)n2)=sin(x)\lim_{n \to 1^+}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \sin{\left(x \right)}
More at n→1 from the right
limn(sin(nx)n2)=~xcos(~x)\lim_{n \to -\infty}\left(\frac{\sin{\left(n x \right)}}{n^{2}}\right) = \tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}
More at n→-oo