Mister Exam

Other calculators:

Limit of the function sin(m*x)/sin(n*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(m*x)\
 lim |--------|
x->0+\sin(n*x)/
limx0+(sin(mx)sin(nx))\lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{\sin{\left(n x \right)}}\right)
Limit(sin(m*x)/sin(n*x), x, 0)
Detail solution
Let's take the limit
limx0+(sin(mx)sin(nx))\lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{\sin{\left(n x \right)}}\right)
transform
limx0+(sin(mx)sin(nx))=limx0+(sin(mx)xxsin(nx))\lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{\sin{\left(n x \right)}}\right) = \lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{x} \frac{x}{\sin{\left(n x \right)}}\right)
=
limx0+(sin(mx)x)limx0+(xsin(nx))\lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{x}\right) \lim_{x \to 0^+}\left(\frac{x}{\sin{\left(n x \right)}}\right)
=
Do replacement
u=mxu = m x
and
v=nxv = n x
then
limx0+(sin(mx)sin(nx))=limx0+(sin(mx)x)limx0+(xsin(nx))\lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{\sin{\left(n x \right)}}\right) = \lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{x}\right) \lim_{x \to 0^+}\left(\frac{x}{\sin{\left(n x \right)}}\right)
limx0+(sin(mx)sin(nx))=limu0+(msin(u)u)limv0+(vnsin(v))\lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{\sin{\left(n x \right)}}\right) = \lim_{u \to 0^+}\left(\frac{m \sin{\left(u \right)}}{u}\right) \lim_{v \to 0^+}\left(\frac{v}{n \sin{\left(v \right)}}\right)
=
mlimu0+(sin(u)u)limv0+(vsin(v))n\frac{m \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right) \lim_{v \to 0^+}\left(\frac{v}{\sin{\left(v \right)}}\right)}{n}
=
mlimu0+(sin(u)u)(limv0+(sin(v)v))1n\frac{m \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right) \left(\lim_{v \to 0^+}\left(\frac{\sin{\left(v \right)}}{v}\right)\right)^{-1}}{n}
The limit
limu0+(sin(u)u)\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
and
limv0+(sin(v)v)\lim_{v \to 0^+}\left(\frac{\sin{\left(v \right)}}{v}\right)
is first remarkable limit, is equal to 1.
then
=
m(limv0+(sin(v)v))1n\frac{m \left(\lim_{v \to 0^+}\left(\frac{\sin{\left(v \right)}}{v}\right)\right)^{-1}}{n}
=
mn\frac{m}{n}

The final answer:
limx0+(sin(mx)sin(nx))=mn\lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{\sin{\left(n x \right)}}\right) = \frac{m}{n}
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+sin(mx)=0\lim_{x \to 0^+} \sin{\left(m x \right)} = 0
and limit for the denominator is
limx0+sin(nx)=0\lim_{x \to 0^+} \sin{\left(n x \right)} = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(sin(mx)sin(nx))\lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{\sin{\left(n x \right)}}\right)
=
limx0+(xsin(mx)xsin(nx))\lim_{x \to 0^+}\left(\frac{\frac{\partial}{\partial x} \sin{\left(m x \right)}}{\frac{\partial}{\partial x} \sin{\left(n x \right)}}\right)
=
limx0+(mcos(mx)ncos(nx))\lim_{x \to 0^+}\left(\frac{m \cos{\left(m x \right)}}{n \cos{\left(n x \right)}}\right)
=
limx0+(mn)\lim_{x \to 0^+}\left(\frac{m}{n}\right)
=
limx0+(mn)\lim_{x \to 0^+}\left(\frac{m}{n}\right)
=
mn\frac{m}{n}
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
Rapid solution [src]
m
-
n
mn\frac{m}{n}
One‐sided limits [src]
     /sin(m*x)\
 lim |--------|
x->0+\sin(n*x)/
limx0+(sin(mx)sin(nx))\lim_{x \to 0^+}\left(\frac{\sin{\left(m x \right)}}{\sin{\left(n x \right)}}\right)
m
-
n
mn\frac{m}{n}
     /sin(m*x)\
 lim |--------|
x->0-\sin(n*x)/
limx0(sin(mx)sin(nx))\lim_{x \to 0^-}\left(\frac{\sin{\left(m x \right)}}{\sin{\left(n x \right)}}\right)
m
-
n
mn\frac{m}{n}
m/n