Mister Exam

Other calculators:


sec2^2*x^2

Limit of the function sec2^2*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   2     2\
 lim  \sec (2)*x /
   pi             
x->--+            
   2              
$$\lim_{x \to \frac{\pi}{2}^+}\left(x^{2} \sec^{2}{\left(2 \right)}\right)$$
Limit(sec(2)^2*x^2, x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
  2    2   
pi *sec (2)
-----------
     4     
$$\frac{\pi^{2} \sec^{2}{\left(2 \right)}}{4}$$
One‐sided limits [src]
      /   2     2\
 lim  \sec (2)*x /
   pi             
x->--+            
   2              
$$\lim_{x \to \frac{\pi}{2}^+}\left(x^{2} \sec^{2}{\left(2 \right)}\right)$$
  2    2   
pi *sec (2)
-----------
     4     
$$\frac{\pi^{2} \sec^{2}{\left(2 \right)}}{4}$$
= 14.2477589494647
      /   2     2\
 lim  \sec (2)*x /
   pi             
x->---            
   2              
$$\lim_{x \to \frac{\pi}{2}^-}\left(x^{2} \sec^{2}{\left(2 \right)}\right)$$
  2    2   
pi *sec (2)
-----------
     4     
$$\frac{\pi^{2} \sec^{2}{\left(2 \right)}}{4}$$
= 14.2477589494647
= 14.2477589494647
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \frac{\pi^{2} \sec^{2}{\left(2 \right)}}{4}$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \frac{\pi^{2} \sec^{2}{\left(2 \right)}}{4}$$
$$\lim_{x \to \infty}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \sec^{2}{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \sec^{2}{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \infty$$
More at x→-oo
Numerical answer [src]
14.2477589494647
14.2477589494647
The graph
Limit of the function sec2^2*x^2