$$\lim_{x \to \frac{\pi}{2}^-}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \frac{\pi^{2} \sec^{2}{\left(2 \right)}}{4}$$
More at x→pi/2 from the left$$\lim_{x \to \frac{\pi}{2}^+}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \frac{\pi^{2} \sec^{2}{\left(2 \right)}}{4}$$
$$\lim_{x \to \infty}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \infty$$
More at x→oo$$\lim_{x \to 0^-}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \sec^{2}{\left(2 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \sec^{2}{\left(2 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(x^{2} \sec^{2}{\left(2 \right)}\right) = \infty$$
More at x→-oo