Mister Exam

Other calculators:


-pi+(1+cos(x))/x

Limit of the function -pi+(1+cos(x))/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /      1 + cos(x)\
 lim  |-pi + ----------|
x->pi+\          x     /
$$\lim_{x \to \pi^+}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right)$$
Limit(-pi + (1 + cos(x))/x, x, pi)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
      /      1 + cos(x)\
 lim  |-pi + ----------|
x->pi+\          x     /
$$\lim_{x \to \pi^+}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right)$$
-pi
$$- \pi$$
= -3.14159265358979
      /      1 + cos(x)\
 lim  |-pi + ----------|
x->pi-\          x     /
$$\lim_{x \to \pi^-}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right)$$
-pi
$$- \pi$$
= -3.14159265358979
= -3.14159265358979
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \pi^-}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi$$
More at x→pi from the left
$$\lim_{x \to \pi^+}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi$$
$$\lim_{x \to \infty}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi$$
More at x→oo
$$\lim_{x \to 0^-}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi + \cos{\left(1 \right)} + 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi + \cos{\left(1 \right)} + 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi$$
More at x→-oo
Rapid solution [src]
-pi
$$- \pi$$
Numerical answer [src]
-3.14159265358979
-3.14159265358979
The graph
Limit of the function -pi+(1+cos(x))/x