$$\lim_{x \to \pi^-}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi$$
More at x→pi from the left$$\lim_{x \to \pi^+}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi$$
$$\lim_{x \to \infty}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi$$
More at x→oo$$\lim_{x \to 0^-}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = -\infty$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = \infty$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi + \cos{\left(1 \right)} + 1$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi + \cos{\left(1 \right)} + 1$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(- \pi + \frac{\cos{\left(x \right)} + 1}{x}\right) = - \pi$$
More at x→-oo