Mister Exam

Other calculators:


sec(2*x)

Limit of the function sec(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim sec(2*x)
x->0+        
$$\lim_{x \to 0^+} \sec{\left(2 x \right)}$$
Limit(sec(2*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
 lim sec(2*x)
x->0+        
$$\lim_{x \to 0^+} \sec{\left(2 x \right)}$$
1
$$1$$
= 1
 lim sec(2*x)
x->0-        
$$\lim_{x \to 0^-} \sec{\left(2 x \right)}$$
1
$$1$$
= 1
= 1
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \sec{\left(2 x \right)} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sec{\left(2 x \right)} = 1$$
$$\lim_{x \to \infty} \sec{\left(2 x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \sec{\left(2 x \right)} = \sec{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sec{\left(2 x \right)} = \sec{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sec{\left(2 x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function sec(2*x)