We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 0^+} \frac{1}{\cot{\left(\frac{\pi x}{2} \right)}} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(\frac{x}{\pi}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{1}{\cot{\left(\frac{\pi x}{2} \right)}}}{\frac{d}{d x} \frac{x}{\pi}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\pi^{2} \left(- \cot^{2}{\left(\frac{\pi x}{2} \right)} - 1\right)}{2 \cot^{2}{\left(\frac{\pi x}{2} \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\pi^{2} \left(- \cot^{2}{\left(\frac{\pi x}{2} \right)} - 1\right)}{2 \cot^{2}{\left(\frac{\pi x}{2} \right)}}\right)$$
=
$$\frac{\pi^{2}}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)