Mister Exam

Other calculators:


pi/(x*cot(pi*x/2))

Limit of the function pi/(x*cot(pi*x/2))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     pi    \
 lim |-----------|
x->0+|     /pi*x\|
     |x*cot|----||
     \     \ 2  //
$$\lim_{x \to 0^+}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right)$$
Limit(pi/((x*cot((pi*x)/2))), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \frac{1}{\cot{\left(\frac{\pi x}{2} \right)}} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(\frac{x}{\pi}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{1}{\cot{\left(\frac{\pi x}{2} \right)}}}{\frac{d}{d x} \frac{x}{\pi}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\pi^{2} \left(- \cot^{2}{\left(\frac{\pi x}{2} \right)} - 1\right)}{2 \cot^{2}{\left(\frac{\pi x}{2} \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\pi^{2} \left(- \cot^{2}{\left(\frac{\pi x}{2} \right)} - 1\right)}{2 \cot^{2}{\left(\frac{\pi x}{2} \right)}}\right)$$
=
$$\frac{\pi^{2}}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
  2
pi 
---
 2 
$$\frac{\pi^{2}}{2}$$
One‐sided limits [src]
     /     pi    \
 lim |-----------|
x->0+|     /pi*x\|
     |x*cot|----||
     \     \ 2  //
$$\lim_{x \to 0^+}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right)$$
  2
pi 
---
 2 
$$\frac{\pi^{2}}{2}$$
= 4.93480220054468
     /     pi    \
 lim |-----------|
x->0-|     /pi*x\|
     |x*cot|----||
     \     \ 2  //
$$\lim_{x \to 0^-}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right)$$
  2
pi 
---
 2 
$$\frac{\pi^{2}}{2}$$
= 4.93480220054468
= 4.93480220054468
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right) = \frac{\pi^{2}}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right) = \frac{\pi^{2}}{2}$$
$$\lim_{x \to \infty}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right) = \infty$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right) = -\infty$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\pi}{x \cot{\left(\frac{\pi x}{2} \right)}}\right)$$
More at x→-oo
Numerical answer [src]
4.93480220054468
4.93480220054468
The graph
Limit of the function pi/(x*cot(pi*x/2))