Mister Exam

Other calculators:


pi/4

Limit of the function pi/4

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /pi\
 lim |--|
x->0+\4 /
$$\lim_{x \to 0^+}\left(\frac{\pi}{4}\right)$$
Limit(pi/4, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\pi}{4}\right) = \frac{\pi}{4}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\pi}{4}\right) = \frac{\pi}{4}$$
$$\lim_{x \to \infty}\left(\frac{\pi}{4}\right) = \frac{\pi}{4}$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\pi}{4}\right) = \frac{\pi}{4}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\pi}{4}\right) = \frac{\pi}{4}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\pi}{4}\right) = \frac{\pi}{4}$$
More at x→-oo
Rapid solution [src]
pi
--
4 
$$\frac{\pi}{4}$$
One‐sided limits [src]
     /pi\
 lim |--|
x->0+\4 /
$$\lim_{x \to 0^+}\left(\frac{\pi}{4}\right)$$
pi
--
4 
$$\frac{\pi}{4}$$
= 0.785398163397448
     /pi\
 lim |--|
x->0-\4 /
$$\lim_{x \to 0^-}\left(\frac{\pi}{4}\right)$$
pi
--
4 
$$\frac{\pi}{4}$$
= 0.785398163397448
= 0.785398163397448
Numerical answer [src]
0.785398163397448
0.785398163397448
The graph
Limit of the function pi/4