Mister Exam

Other calculators:


(1+x)^(1/x)

Limit of the function (1+x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x _______
 lim \/ 1 + x 
x->0+         
$$\lim_{x \to 0^+} \left(x + 1\right)^{\frac{1}{x}}$$
Limit((1 + x)^(1/x), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+} \left(x + 1\right)^{\frac{1}{x}}$$
transform
do replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to 0^+} \left(1 + \frac{1}{\frac{1}{x}}\right)^{\frac{1}{x}}$$ =
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}$$
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}$$
=
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)$$
The limit
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right) = e$$

The final answer:
$$\lim_{x \to 0^+} \left(x + 1\right)^{\frac{1}{x}} = e$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     x _______
 lim \/ 1 + x 
x->0+         
$$\lim_{x \to 0^+} \left(x + 1\right)^{\frac{1}{x}}$$
E
$$e$$
= 2.71828182845905
     x _______
 lim \/ 1 + x 
x->0-         
$$\lim_{x \to 0^-} \left(x + 1\right)^{\frac{1}{x}}$$
E
$$e$$
= 2.71828182845905
= 2.71828182845905
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \left(x + 1\right)^{\frac{1}{x}} = e$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(x + 1\right)^{\frac{1}{x}} = e$$
$$\lim_{x \to \infty} \left(x + 1\right)^{\frac{1}{x}} = 1$$
More at x→oo
$$\lim_{x \to 1^-} \left(x + 1\right)^{\frac{1}{x}} = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(x + 1\right)^{\frac{1}{x}} = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(x + 1\right)^{\frac{1}{x}} = 1$$
More at x→-oo
Rapid solution [src]
E
$$e$$
Numerical answer [src]
2.71828182845905
2.71828182845905
The graph
Limit of the function (1+x)^(1/x)