Mister Exam

Other calculators:


(1+x)/(4-x^2)

Limit of the function (1+x)/(4-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1 + x \
 lim |------|
x->2+|     2|
     \4 - x /
$$\lim_{x \to 2^+}\left(\frac{x + 1}{4 - x^{2}}\right)$$
Limit((1 + x)/(4 - x^2), x, 2)
Detail solution
Let's take the limit
$$\lim_{x \to 2^+}\left(\frac{x + 1}{4 - x^{2}}\right)$$
transform
$$\lim_{x \to 2^+}\left(\frac{x + 1}{4 - x^{2}}\right)$$
=
$$\lim_{x \to 2^+}\left(\frac{x + 1}{\left(-1\right) \left(x - 2\right) \left(x + 2\right)}\right)$$
=
$$\lim_{x \to 2^+}\left(- \frac{x + 1}{x^{2} - 4}\right) = $$
False

= -oo

The final answer:
$$\lim_{x \to 2^+}\left(\frac{x + 1}{4 - x^{2}}\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     /1 + x \
 lim |------|
x->2+|     2|
     \4 - x /
$$\lim_{x \to 2^+}\left(\frac{x + 1}{4 - x^{2}}\right)$$
-oo
$$-\infty$$
= -113.312396694215
     /1 + x \
 lim |------|
x->2-|     2|
     \4 - x /
$$\lim_{x \to 2^-}\left(\frac{x + 1}{4 - x^{2}}\right)$$
oo
$$\infty$$
= 113.187396351575
= 113.187396351575
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(\frac{x + 1}{4 - x^{2}}\right) = -\infty$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(\frac{x + 1}{4 - x^{2}}\right) = -\infty$$
$$\lim_{x \to \infty}\left(\frac{x + 1}{4 - x^{2}}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x + 1}{4 - x^{2}}\right) = \frac{1}{4}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x + 1}{4 - x^{2}}\right) = \frac{1}{4}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x + 1}{4 - x^{2}}\right) = \frac{2}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x + 1}{4 - x^{2}}\right) = \frac{2}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x + 1}{4 - x^{2}}\right) = 0$$
More at x→-oo
Numerical answer [src]
-113.312396694215
-113.312396694215
The graph
Limit of the function (1+x)/(4-x^2)