Mister Exam

Other calculators:


(1+2/n)^(4*n)

Limit of the function (1+2/n)^(4*n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            4*n
     /    2\   
 lim |1 + -|   
n->oo\    n/   
$$\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^{4 n}$$
Limit((1 + 2/n)^(4*n), n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^{4 n}$$
transform
do replacement
$$u = \frac{n}{2}$$
then
$$\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^{4 n}$$ =
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{8 u}$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{8 u}$$
=
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{8}$$
The limit
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{8} = e^{8}$$

The final answer:
$$\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^{4 n} = e^{8}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 8
e 
$$e^{8}$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^{4 n} = e^{8}$$
$$\lim_{n \to 0^-} \left(1 + \frac{2}{n}\right)^{4 n} = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+} \left(1 + \frac{2}{n}\right)^{4 n} = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-} \left(1 + \frac{2}{n}\right)^{4 n} = 81$$
More at n→1 from the left
$$\lim_{n \to 1^+} \left(1 + \frac{2}{n}\right)^{4 n} = 81$$
More at n→1 from the right
$$\lim_{n \to -\infty} \left(1 + \frac{2}{n}\right)^{4 n} = e^{8}$$
More at n→-oo
The graph
Limit of the function (1+2/n)^(4*n)