$$\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^{4 n} = e^{8}$$ $$\lim_{n \to 0^-} \left(1 + \frac{2}{n}\right)^{4 n} = 1$$ More at n→0 from the left $$\lim_{n \to 0^+} \left(1 + \frac{2}{n}\right)^{4 n} = 1$$ More at n→0 from the right $$\lim_{n \to 1^-} \left(1 + \frac{2}{n}\right)^{4 n} = 81$$ More at n→1 from the left $$\lim_{n \to 1^+} \left(1 + \frac{2}{n}\right)^{4 n} = 81$$ More at n→1 from the right $$\lim_{n \to -\infty} \left(1 + \frac{2}{n}\right)^{4 n} = e^{8}$$ More at n→-oo