Mister Exam

Other calculators:


(1+sin(x))/(1-cos(x))

Limit of the function (1+sin(x))/(1-cos(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /1 + sin(x)\
 lim  |----------|
   pi \1 - cos(x)/
x->--+            
   2              
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right)$$
Limit((1 + sin(x))/(1 - cos(x)), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
2
$$2$$
One‐sided limits [src]
      /1 + sin(x)\
 lim  |----------|
   pi \1 - cos(x)/
x->--+            
   2              
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right)$$
2
$$2$$
= 2.0
      /1 + sin(x)\
 lim  |----------|
   pi \1 - cos(x)/
x->---            
   2              
$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right)$$
2
$$2$$
= 2.0
= 2.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right) = 2$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right) = 2$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right) = 1$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right) = - \frac{\sin{\left(1 \right)} + 1}{-1 + \cos{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right) = - \frac{\sin{\left(1 \right)} + 1}{-1 + \cos{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(x \right)} + 1}{1 - \cos{\left(x \right)}}\right) = 1$$
More at x→-oo
Numerical answer [src]
2.0
2.0
The graph
Limit of the function (1+sin(x))/(1-cos(x))