Mister Exam

Other calculators:


(1+(1/2)^x)^x

Limit of the function (1+(1/2)^x)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
              x
     /     -x\ 
 lim \1 + 2  / 
x->oo          
$$\lim_{x \to \infty} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x}$$
Limit((1 + (1/2)^x)^x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = 1$$
$$\lim_{x \to 0^-} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = \frac{3}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = \frac{3}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = 0$$
More at x→-oo
The graph
Limit of the function (1+(1/2)^x)^x