$$\lim_{x \to \infty} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = 1$$
$$\lim_{x \to 0^-} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = 1$$
More at x→0 from the left$$\lim_{x \to 0^+} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = 1$$
More at x→0 from the right$$\lim_{x \to 1^-} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = \frac{3}{2}$$
More at x→1 from the left$$\lim_{x \to 1^+} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = \frac{3}{2}$$
More at x→1 from the right$$\lim_{x \to -\infty} \left(1 + \left(\frac{1}{2}\right)^{x}\right)^{x} = 0$$
More at x→-oo