Mister Exam

Other calculators:


(1-sqrt(x))/(1-x)

Limit of the function (1-sqrt(x))/(1-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      ___\
     |1 - \/ x |
 lim |---------|
x->1+\  1 - x  /
$$\lim_{x \to 1^+}\left(\frac{1 - \sqrt{x}}{1 - x}\right)$$
Limit((1 - sqrt(x))/(1 - x), x, 1)
Detail solution
Let's take the limit
$$\lim_{x \to 1^+}\left(\frac{1 - \sqrt{x}}{1 - x}\right)$$
Multiply numerator and denominator by
$$- \sqrt{x} - 1$$
we get
$$\frac{\frac{1 - \sqrt{x}}{1 - x} \left(- \sqrt{x} - 1\right)}{- \sqrt{x} - 1}$$
=
$$\frac{x - 1}{\left(1 - x\right) \left(- \sqrt{x} - 1\right)}$$
=
$$- \frac{1}{- \sqrt{x} - 1}$$
The final answer:
$$\lim_{x \to 1^+}\left(\frac{1 - \sqrt{x}}{1 - x}\right)$$
=
$$\lim_{x \to 1^+}\left(- \frac{1}{- \sqrt{x} - 1}\right)$$
=
$$\frac{1}{2}$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 1^+}\left(1 - \sqrt{x}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 1^+}\left(1 - x\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 1^+}\left(\frac{1 - \sqrt{x}}{1 - x}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{\frac{d}{d x} \left(1 - \sqrt{x}\right)}{\frac{d}{d x} \left(1 - x\right)}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{1}{2 \sqrt{x}}\right)$$
=
$$\lim_{x \to 1^+} \frac{1}{2}$$
=
$$\lim_{x \to 1^+} \frac{1}{2}$$
=
$$\frac{1}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /      ___\
     |1 - \/ x |
 lim |---------|
x->1+\  1 - x  /
$$\lim_{x \to 1^+}\left(\frac{1 - \sqrt{x}}{1 - x}\right)$$
1/2
$$\frac{1}{2}$$
= 0.5
     /      ___\
     |1 - \/ x |
 lim |---------|
x->1-\  1 - x  /
$$\lim_{x \to 1^-}\left(\frac{1 - \sqrt{x}}{1 - x}\right)$$
1/2
$$\frac{1}{2}$$
= 0.5
= 0.5
Rapid solution [src]
1/2
$$\frac{1}{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{1 - \sqrt{x}}{1 - x}\right) = \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{1 - \sqrt{x}}{1 - x}\right) = \frac{1}{2}$$
$$\lim_{x \to \infty}\left(\frac{1 - \sqrt{x}}{1 - x}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{1 - \sqrt{x}}{1 - x}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{1 - \sqrt{x}}{1 - x}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{1 - \sqrt{x}}{1 - x}\right) = 0$$
More at x→-oo
Numerical answer [src]
0.5
0.5
The graph
Limit of the function (1-sqrt(x))/(1-x)