Mister Exam

Other calculators:


(1+log(x))/x

Limit of the function (1+log(x))/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /1 + log(x)\
 lim  |----------|
x->-oo\    x     /
$$\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)} + 1}{x}\right)$$
Limit((1 + log(x))/x, x, -oo)
Lopital's rule
We have indeterminateness of type
oo/-oo,

i.e. limit for the numerator is
$$\lim_{x \to -\infty}\left(\log{\left(x \right)} + 1\right) = \infty$$
and limit for the denominator is
$$\lim_{x \to -\infty} x = -\infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)} + 1}{x}\right)$$
=
$$\lim_{x \to -\infty}\left(\frac{\frac{d}{d x} \left(\log{\left(x \right)} + 1\right)}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to -\infty} \frac{1}{x}$$
=
$$\lim_{x \to -\infty} \frac{1}{x}$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = 1$$
More at x→1 from the right
The graph
Limit of the function (1+log(x))/x