Mister Exam

Other calculators:


(1+log(x))/x

Limit of the function (1+log(x))/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /1 + log(x)\
 lim  |----------|
x->-oo\    x     /
limx(log(x)+1x)\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)} + 1}{x}\right)
Limit((1 + log(x))/x, x, -oo)
Lopital's rule
We have indeterminateness of type
oo/-oo,

i.e. limit for the numerator is
limx(log(x)+1)=\lim_{x \to -\infty}\left(\log{\left(x \right)} + 1\right) = \infty
and limit for the denominator is
limxx=\lim_{x \to -\infty} x = -\infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(log(x)+1x)\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)} + 1}{x}\right)
=
limx(ddx(log(x)+1)ddxx)\lim_{x \to -\infty}\left(\frac{\frac{d}{d x} \left(\log{\left(x \right)} + 1\right)}{\frac{d}{d x} x}\right)
=
limx1x\lim_{x \to -\infty} \frac{1}{x}
=
limx1x\lim_{x \to -\infty} \frac{1}{x}
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-2020
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(log(x)+1x)=0\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = 0
limx(log(x)+1x)=0\lim_{x \to \infty}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = 0
More at x→oo
limx0(log(x)+1x)=\lim_{x \to 0^-}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = \infty
More at x→0 from the left
limx0+(log(x)+1x)=\lim_{x \to 0^+}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = -\infty
More at x→0 from the right
limx1(log(x)+1x)=1\lim_{x \to 1^-}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = 1
More at x→1 from the left
limx1+(log(x)+1x)=1\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)} + 1}{x}\right) = 1
More at x→1 from the right
The graph
Limit of the function (1+log(x))/x