Mister Exam

Other calculators:


1+(4/3)^n

Limit of the function 1+(4/3)^n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       n\
 lim \1 + 4/3 /
n->oo          
$$\lim_{n \to \infty}\left(\left(\frac{4}{3}\right)^{n} + 1\right)$$
Limit(1 + (4/3)^n, n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\left(\frac{4}{3}\right)^{n} + 1\right) = \infty$$
$$\lim_{n \to 0^-}\left(\left(\frac{4}{3}\right)^{n} + 1\right) = 2$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\left(\frac{4}{3}\right)^{n} + 1\right) = 2$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\left(\frac{4}{3}\right)^{n} + 1\right) = \frac{7}{3}$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\left(\frac{4}{3}\right)^{n} + 1\right) = \frac{7}{3}$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\left(\frac{4}{3}\right)^{n} + 1\right) = 1$$
More at n→-oo
The graph
Limit of the function 1+(4/3)^n