Mister Exam

Other calculators:


1-x-sin(x/2)/pi

Limit of the function 1-x-sin(x/2)/pi

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /           /x\\
      |        sin|-||
      |           \2/|
 lim  |1 - x - ------|
x->pi+\          pi  /
$$\lim_{x \to \pi^+}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right)$$
Limit(1 - x - sin(x/2)/pi, x, pi)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \pi^-}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = - \pi - \frac{1}{\pi} + 1$$
More at x→pi from the left
$$\lim_{x \to \pi^+}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = - \pi - \frac{1}{\pi} + 1$$
$$\lim_{x \to \infty}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = - \frac{\sin{\left(\frac{1}{2} \right)}}{\pi}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = - \frac{\sin{\left(\frac{1}{2} \right)}}{\pi}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = \infty$$
More at x→-oo
One‐sided limits [src]
      /           /x\\
      |        sin|-||
      |           \2/|
 lim  |1 - x - ------|
x->pi+\          pi  /
$$\lim_{x \to \pi^+}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right)$$
         1 
1 - pi - --
         pi
$$- \pi - \frac{1}{\pi} + 1$$
= -2.45990253977358
      /           /x\\
      |        sin|-||
      |           \2/|
 lim  |1 - x - ------|
x->pi-\          pi  /
$$\lim_{x \to \pi^-}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right)$$
         1 
1 - pi - --
         pi
$$- \pi - \frac{1}{\pi} + 1$$
= -2.45990253977358
= -2.45990253977358
Rapid solution [src]
         1 
1 - pi - --
         pi
$$- \pi - \frac{1}{\pi} + 1$$
Numerical answer [src]
-2.45990253977358
-2.45990253977358
The graph
Limit of the function 1-x-sin(x/2)/pi