$$\lim_{x \to \pi^-}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = - \pi - \frac{1}{\pi} + 1$$
More at x→pi from the left$$\lim_{x \to \pi^+}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = - \pi - \frac{1}{\pi} + 1$$
$$\lim_{x \to \infty}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = -\infty$$
More at x→oo$$\lim_{x \to 0^-}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = 1$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = - \frac{\sin{\left(\frac{1}{2} \right)}}{\pi}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = - \frac{\sin{\left(\frac{1}{2} \right)}}{\pi}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(- x - \frac{\sin{\left(\frac{x}{2} \right)}}{\pi} + 1\right) = \infty$$
More at x→-oo