Mister Exam

Other calculators:


1-5*x

Limit of the function 1-5*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (1 - 5*x)
x->0+         
$$\lim_{x \to 0^+}\left(- 5 x + 1\right)$$
Limit(1 - 5*x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
 lim (1 - 5*x)
x->0+         
$$\lim_{x \to 0^+}\left(- 5 x + 1\right)$$
1
$$1$$
= 1
 lim (1 - 5*x)
x->0-         
$$\lim_{x \to 0^-}\left(- 5 x + 1\right)$$
1
$$1$$
= 1
= 1
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(- 5 x + 1\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- 5 x + 1\right) = 1$$
$$\lim_{x \to \infty}\left(- 5 x + 1\right) = -\infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(- 5 x + 1\right) = -4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- 5 x + 1\right) = -4$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- 5 x + 1\right) = \infty$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function 1-5*x