Mister Exam

Other calculators:


1-cos(2*x)

Limit of the function 1-cos(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (1 - cos(2*x))
x->0+              
$$\lim_{x \to 0^+}\left(1 - \cos{\left(2 x \right)}\right)$$
Limit(1 - cos(2*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(1 - \cos{\left(2 x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(1 - \cos{\left(2 x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(1 - \cos{\left(2 x \right)}\right) = \left\langle 0, 2\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(1 - \cos{\left(2 x \right)}\right) = 1 - \cos{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(1 - \cos{\left(2 x \right)}\right) = 1 - \cos{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(1 - \cos{\left(2 x \right)}\right) = \left\langle 0, 2\right\rangle$$
More at x→-oo
One‐sided limits [src]
 lim (1 - cos(2*x))
x->0+              
$$\lim_{x \to 0^+}\left(1 - \cos{\left(2 x \right)}\right)$$
0
$$0$$
= 3.69697164723554e-31
 lim (1 - cos(2*x))
x->0-              
$$\lim_{x \to 0^-}\left(1 - \cos{\left(2 x \right)}\right)$$
0
$$0$$
= 3.69697164723554e-31
= 3.69697164723554e-31
Numerical answer [src]
3.69697164723554e-31
3.69697164723554e-31
The graph
Limit of the function 1-cos(2*x)