Mister Exam

Other calculators:


(1/x)^x

Limit of the function (1/x)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        x
     /1\ 
 lim |-| 
x->0+\x/ 
$$\lim_{x \to 0^+} \left(\frac{1}{x}\right)^{x}$$
Limit((1/x)^x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \left(\frac{1}{x}\right)^{x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\frac{1}{x}\right)^{x} = 1$$
$$\lim_{x \to \infty} \left(\frac{1}{x}\right)^{x} = 0$$
More at x→oo
$$\lim_{x \to 1^-} \left(\frac{1}{x}\right)^{x} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\frac{1}{x}\right)^{x} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\frac{1}{x}\right)^{x} = \infty$$
More at x→-oo
One‐sided limits [src]
        x
     /1\ 
 lim |-| 
x->0+\x/ 
$$\lim_{x \to 0^+} \left(\frac{1}{x}\right)^{x}$$
1
$$1$$
= 1.00136961801338
        x
     /1\ 
 lim |-| 
x->0-\x/ 
$$\lim_{x \to 0^-} \left(\frac{1}{x}\right)^{x}$$
1
$$1$$
= (0.998069004047152 - 0.000766163593756062j)
= (0.998069004047152 - 0.000766163593756062j)
Rapid solution [src]
1
$$1$$
Numerical answer [src]
1.00136961801338
1.00136961801338
The graph
Limit of the function (1/x)^x