Mister Exam

Other calculators:


1/(x^2*log(x))

Limit of the function 1/(x^2*log(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
          1    
 lim  ---------
x->-oo 2       
      x *log(x)
$$\lim_{x \to -\infty} \frac{1}{x^{2} \log{\left(x \right)}}$$
Limit(1/(x^2*log(x)), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty} \frac{1}{x^{2} \log{\left(x \right)}} = 0$$
$$\lim_{x \to \infty} \frac{1}{x^{2} \log{\left(x \right)}} = 0$$
More at x→oo
$$\lim_{x \to 0^-} \frac{1}{x^{2} \log{\left(x \right)}} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{2} \log{\left(x \right)}} = -\infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{x^{2} \log{\left(x \right)}} = -\infty$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{2} \log{\left(x \right)}} = \infty$$
More at x→1 from the right
The graph
Limit of the function 1/(x^2*log(x))