Mister Exam

Other calculators

Integral of 1/(x^2*log(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      1       
 |  --------- dx
 |   2          
 |  x *log(x)   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{1}{x^{2} \log{\left(x \right)}}\, dx$$
Integral(1/(x^2*log(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                              
 |                               
 |     1                         
 | --------- dx = C + Ei(-log(x))
 |  2                            
 | x *log(x)                     
 |                               
/                                
$$\int \frac{1}{x^{2} \log{\left(x \right)}}\, dx = C + \operatorname{Ei}{\left(- \log{\left(x \right)} \right)}$$
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
-3.20566920865147e+17
-3.20566920865147e+17

    Use the examples entering the upper and lower limits of integration.