Mister Exam

Other calculators:


1/(2+cos(x))

Limit of the function 1/(2+cos(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         1     
 lim ----------
x->oo2 + cos(x)
$$\lim_{x \to \infty} \frac{1}{\cos{\left(x \right)} + 2}$$
Limit(1/(2 + cos(x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
<1/3, 1>
$$\left\langle \frac{1}{3}, 1\right\rangle$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{\cos{\left(x \right)} + 2} = \left\langle \frac{1}{3}, 1\right\rangle$$
$$\lim_{x \to 0^-} \frac{1}{\cos{\left(x \right)} + 2} = \frac{1}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{\cos{\left(x \right)} + 2} = \frac{1}{3}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{\cos{\left(x \right)} + 2} = \frac{1}{\cos{\left(1 \right)} + 2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{\cos{\left(x \right)} + 2} = \frac{1}{\cos{\left(1 \right)} + 2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{\cos{\left(x \right)} + 2} = \left\langle \frac{1}{3}, 1\right\rangle$$
More at x→-oo
The graph
Limit of the function 1/(2+cos(x))