$$\lim_{x \to \infty} \frac{1}{\cos{\left(x \right)} + 2} = \left\langle \frac{1}{3}, 1\right\rangle$$
$$\lim_{x \to 0^-} \frac{1}{\cos{\left(x \right)} + 2} = \frac{1}{3}$$
More at x→0 from the left$$\lim_{x \to 0^+} \frac{1}{\cos{\left(x \right)} + 2} = \frac{1}{3}$$
More at x→0 from the right$$\lim_{x \to 1^-} \frac{1}{\cos{\left(x \right)} + 2} = \frac{1}{\cos{\left(1 \right)} + 2}$$
More at x→1 from the left$$\lim_{x \to 1^+} \frac{1}{\cos{\left(x \right)} + 2} = \frac{1}{\cos{\left(1 \right)} + 2}$$
More at x→1 from the right$$\lim_{x \to -\infty} \frac{1}{\cos{\left(x \right)} + 2} = \left\langle \frac{1}{3}, 1\right\rangle$$
More at x→-oo