Mister Exam

Other calculators:

Limit of the function 1/3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (1/3)
x->0+     
$$\lim_{x \to 0^+} \frac{1}{3}$$
Limit(1/3, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{1}{3} = \frac{1}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{3} = \frac{1}{3}$$
$$\lim_{x \to \infty} \frac{1}{3} = \frac{1}{3}$$
More at x→oo
$$\lim_{x \to 1^-} \frac{1}{3} = \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{3} = \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{3} = \frac{1}{3}$$
More at x→-oo
Rapid solution [src]
1/3
$$\frac{1}{3}$$
One‐sided limits [src]
 lim (1/3)
x->0+     
$$\lim_{x \to 0^+} \frac{1}{3}$$
1/3
$$\frac{1}{3}$$
= 0.333333333333333
 lim (1/3)
x->0-     
$$\lim_{x \to 0^-} \frac{1}{3}$$
1/3
$$\frac{1}{3}$$
= 0.333333333333333
= 0.333333333333333
Numerical answer [src]
0.333333333333333
0.333333333333333