Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 7*tan(9*x/5)/x
Limit of (2+x^2-3*x)/(3+x^2-4*x)
Limit of -2+e^x-e^(-x)-sin(x)
Limit of (2-7*x+3*x^2)/(2-5*x+2*x^2)
Sum of series
:
1/3
Derivative of
:
1/3
Integral of d{x}
:
1/3
Identical expressions
one / three
1 divide by 3
one divide by three
Similar expressions
(1-1/(3*x))^(6*x)
-1/(3*x^3)
Limit of the function
/
1/3
Limit of the function 1/3
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (1/3) x->0+
$$\lim_{x \to 0^+} \frac{1}{3}$$
Limit(1/3, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{1}{3} = \frac{1}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{3} = \frac{1}{3}$$
$$\lim_{x \to \infty} \frac{1}{3} = \frac{1}{3}$$
More at x→oo
$$\lim_{x \to 1^-} \frac{1}{3} = \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{3} = \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{3} = \frac{1}{3}$$
More at x→-oo
Rapid solution
[src]
1/3
$$\frac{1}{3}$$
Expand and simplify
One‐sided limits
[src]
lim (1/3) x->0+
$$\lim_{x \to 0^+} \frac{1}{3}$$
1/3
$$\frac{1}{3}$$
= 0.333333333333333
lim (1/3) x->0-
$$\lim_{x \to 0^-} \frac{1}{3}$$
1/3
$$\frac{1}{3}$$
= 0.333333333333333
= 0.333333333333333
Numerical answer
[src]
0.333333333333333
0.333333333333333