Mister Exam

Other calculators:


log(1-2*x)

Limit of the function log(1-2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim log(1 - 2*x)
x->0+            
$$\lim_{x \to 0^+} \log{\left(- 2 x + 1 \right)}$$
Limit(log(1 - 2*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \log{\left(- 2 x + 1 \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(- 2 x + 1 \right)} = 0$$
$$\lim_{x \to \infty} \log{\left(- 2 x + 1 \right)} = \infty$$
More at x→oo
$$\lim_{x \to 1^-} \log{\left(- 2 x + 1 \right)} = i \pi$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(- 2 x + 1 \right)} = i \pi$$
More at x→1 from the right
$$\lim_{x \to -\infty} \log{\left(- 2 x + 1 \right)} = \infty$$
More at x→-oo
One‐sided limits [src]
 lim log(1 - 2*x)
x->0+            
$$\lim_{x \to 0^+} \log{\left(- 2 x + 1 \right)}$$
0
$$0$$
= -0.0865450113393343
 lim log(1 - 2*x)
x->0-            
$$\lim_{x \to 0^-} \log{\left(- 2 x + 1 \right)}$$
0
$$0$$
= 6.7517030308139e-27
= 6.7517030308139e-27
Rapid solution [src]
0
$$0$$
Numerical answer [src]
-0.0865450113393343
-0.0865450113393343
The graph
Limit of the function log(1-2*x)