Mister Exam

Other calculators:


1/t

Limit of the function 1/t

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  1\
 lim |1*-|
t->oo\  t/
limt(11t)\lim_{t \to \infty}\left(1 \cdot \frac{1}{t}\right)
Limit(1/t, t, oo, dir='-')
Detail solution
Let's take the limit
limt(11t)\lim_{t \to \infty}\left(1 \cdot \frac{1}{t}\right)
Let's divide numerator and denominator by t:
limt(11t)\lim_{t \to \infty}\left(1 \cdot \frac{1}{t}\right) =
limt(11t)\lim_{t \to \infty}\left(\frac{1}{1 t}\right)
Do Replacement
u=1tu = \frac{1}{t}
then
limt(11t)=limu0+u\lim_{t \to \infty}\left(\frac{1}{1 t}\right) = \lim_{u \to 0^+} u
=
0=00 = 0

The final answer:
limt(11t)=0\lim_{t \to \infty}\left(1 \cdot \frac{1}{t}\right) = 0
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Rapid solution [src]
0
00
Other limits t→0, -oo, +oo, 1
limt(11t)=0\lim_{t \to \infty}\left(1 \cdot \frac{1}{t}\right) = 0
limt0(11t)=\lim_{t \to 0^-}\left(1 \cdot \frac{1}{t}\right) = -\infty
More at t→0 from the left
limt0+(11t)=\lim_{t \to 0^+}\left(1 \cdot \frac{1}{t}\right) = \infty
More at t→0 from the right
limt1(11t)=1\lim_{t \to 1^-}\left(1 \cdot \frac{1}{t}\right) = 1
More at t→1 from the left
limt1+(11t)=1\lim_{t \to 1^+}\left(1 \cdot \frac{1}{t}\right) = 1
More at t→1 from the right
limt(11t)=0\lim_{t \to -\infty}\left(1 \cdot \frac{1}{t}\right) = 0
More at t→-oo
The graph
Limit of the function 1/t