Mister Exam

Other calculators:


1/sqrt(1+x^2)

Limit of the function 1/sqrt(1+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
          1     
 lim -----------
x->oo   ________
       /      2 
     \/  1 + x  
limx1x2+1\lim_{x \to \infty} \frac{1}{\sqrt{x^{2} + 1}}
Limit(1/(sqrt(1 + x^2)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100.02.0
Other limits x→0, -oo, +oo, 1
limx1x2+1=0\lim_{x \to \infty} \frac{1}{\sqrt{x^{2} + 1}} = 0
limx01x2+1=1\lim_{x \to 0^-} \frac{1}{\sqrt{x^{2} + 1}} = 1
More at x→0 from the left
limx0+1x2+1=1\lim_{x \to 0^+} \frac{1}{\sqrt{x^{2} + 1}} = 1
More at x→0 from the right
limx11x2+1=22\lim_{x \to 1^-} \frac{1}{\sqrt{x^{2} + 1}} = \frac{\sqrt{2}}{2}
More at x→1 from the left
limx1+1x2+1=22\lim_{x \to 1^+} \frac{1}{\sqrt{x^{2} + 1}} = \frac{\sqrt{2}}{2}
More at x→1 from the right
limx1x2+1=0\lim_{x \to -\infty} \frac{1}{\sqrt{x^{2} + 1}} = 0
More at x→-oo
Rapid solution [src]
0
00
The graph
Limit of the function 1/sqrt(1+x^2)