$$\lim_{x \to \infty} \frac{1}{\sqrt{x^{2} + 1}} = 0$$ $$\lim_{x \to 0^-} \frac{1}{\sqrt{x^{2} + 1}} = 1$$ More at x→0 from the left $$\lim_{x \to 0^+} \frac{1}{\sqrt{x^{2} + 1}} = 1$$ More at x→0 from the right $$\lim_{x \to 1^-} \frac{1}{\sqrt{x^{2} + 1}} = \frac{\sqrt{2}}{2}$$ More at x→1 from the left $$\lim_{x \to 1^+} \frac{1}{\sqrt{x^{2} + 1}} = \frac{\sqrt{2}}{2}$$ More at x→1 from the right $$\lim_{x \to -\infty} \frac{1}{\sqrt{x^{2} + 1}} = 0$$ More at x→-oo