Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (e^x-e^2)/(-2+x)
Limit of (-asin(x)+2*x)/(2*x+atan(x))
Limit of 2^(-n)*2^(1+n)
Limit of (-6+x^2-x)/(9+x^2-6*x)
Derivative of
:
1/sqrt(1+x^2)
Integral of d{x}
:
1/sqrt(1+x^2)
Identical expressions
one /sqrt(one +x^ two)
1 divide by square root of (1 plus x squared )
one divide by square root of (one plus x to the power of two)
1/√(1+x^2)
1/sqrt(1+x2)
1/sqrt1+x2
1/sqrt(1+x²)
1/sqrt(1+x to the power of 2)
1/sqrt1+x^2
1 divide by sqrt(1+x^2)
Similar expressions
1/sqrt(1-x^2)
Limit of the function
/
1/sqrt(1+x^2)
Limit of the function 1/sqrt(1+x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim ----------- x->oo ________ / 2 \/ 1 + x
lim
x
→
∞
1
x
2
+
1
\lim_{x \to \infty} \frac{1}{\sqrt{x^{2} + 1}}
x
→
∞
lim
x
2
+
1
1
Limit(1/(sqrt(1 + x^2)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0.0
2.0
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
1
x
2
+
1
=
0
\lim_{x \to \infty} \frac{1}{\sqrt{x^{2} + 1}} = 0
x
→
∞
lim
x
2
+
1
1
=
0
lim
x
→
0
−
1
x
2
+
1
=
1
\lim_{x \to 0^-} \frac{1}{\sqrt{x^{2} + 1}} = 1
x
→
0
−
lim
x
2
+
1
1
=
1
More at x→0 from the left
lim
x
→
0
+
1
x
2
+
1
=
1
\lim_{x \to 0^+} \frac{1}{\sqrt{x^{2} + 1}} = 1
x
→
0
+
lim
x
2
+
1
1
=
1
More at x→0 from the right
lim
x
→
1
−
1
x
2
+
1
=
2
2
\lim_{x \to 1^-} \frac{1}{\sqrt{x^{2} + 1}} = \frac{\sqrt{2}}{2}
x
→
1
−
lim
x
2
+
1
1
=
2
2
More at x→1 from the left
lim
x
→
1
+
1
x
2
+
1
=
2
2
\lim_{x \to 1^+} \frac{1}{\sqrt{x^{2} + 1}} = \frac{\sqrt{2}}{2}
x
→
1
+
lim
x
2
+
1
1
=
2
2
More at x→1 from the right
lim
x
→
−
∞
1
x
2
+
1
=
0
\lim_{x \to -\infty} \frac{1}{\sqrt{x^{2} + 1}} = 0
x
→
−
∞
lim
x
2
+
1
1
=
0
More at x→-oo
Rapid solution
[src]
0
0
0
0
Expand and simplify
The graph