Mister Exam

Limit of the function 9/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (9/2)
x->0+     
$$\lim_{x \to 0^+} \frac{9}{2}$$
Limit(9/2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
9/2
$$\frac{9}{2}$$
One‐sided limits [src]
 lim (9/2)
x->0+     
$$\lim_{x \to 0^+} \frac{9}{2}$$
9/2
$$\frac{9}{2}$$
= 4.5
 lim (9/2)
x->0-     
$$\lim_{x \to 0^-} \frac{9}{2}$$
9/2
$$\frac{9}{2}$$
= 4.5
= 4.5
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{9}{2} = \frac{9}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{9}{2} = \frac{9}{2}$$
$$\lim_{x \to \infty} \frac{9}{2} = \frac{9}{2}$$
More at x→oo
$$\lim_{x \to 1^-} \frac{9}{2} = \frac{9}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{9}{2} = \frac{9}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{9}{2} = \frac{9}{2}$$
More at x→-oo
Numerical answer [src]
4.5
4.5
The graph
Limit of the function 9/2