Mister Exam

Other calculators:


n^3

Limit of the function n^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      3
 lim n 
n->oo  
limnn3\lim_{n \to \infty} n^{3}
Limit(n^3, n, oo, dir='-')
Detail solution
Let's take the limit
limnn3\lim_{n \to \infty} n^{3}
Let's divide numerator and denominator by n^3:
limnn3\lim_{n \to \infty} n^{3} =
limn11n3\lim_{n \to \infty} \frac{1}{\frac{1}{n^{3}}}
Do Replacement
u=1nu = \frac{1}{n}
then
limn11n3=limu0+1u3\lim_{n \to \infty} \frac{1}{\frac{1}{n^{3}}} = \lim_{u \to 0^+} \frac{1}{u^{3}}
=
10=\frac{1}{0} = \infty

The final answer:
limnn3=\lim_{n \to \infty} n^{3} = \infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-20002000
Rapid solution [src]
oo
\infty
Other limits n→0, -oo, +oo, 1
limnn3=\lim_{n \to \infty} n^{3} = \infty
limn0n3=0\lim_{n \to 0^-} n^{3} = 0
More at n→0 from the left
limn0+n3=0\lim_{n \to 0^+} n^{3} = 0
More at n→0 from the right
limn1n3=1\lim_{n \to 1^-} n^{3} = 1
More at n→1 from the left
limn1+n3=1\lim_{n \to 1^+} n^{3} = 1
More at n→1 from the right
limnn3=\lim_{n \to -\infty} n^{3} = -\infty
More at n→-oo
The graph
Limit of the function n^3