Mister Exam

Other calculators:

Limit of the function n*x*(n+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (n*x*(n + x))
x->oo             
$$\lim_{x \to \infty}\left(n x \left(n + x\right)\right)$$
Limit((n*x)*(n + x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
oo*sign(n)
$$\infty \operatorname{sign}{\left(n \right)}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(n x \left(n + x\right)\right) = \infty \operatorname{sign}{\left(n \right)}$$
$$\lim_{x \to 0^-}\left(n x \left(n + x\right)\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(n x \left(n + x\right)\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(n x \left(n + x\right)\right) = n^{2} + n$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(n x \left(n + x\right)\right) = n^{2} + n$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(n x \left(n + x\right)\right) = \infty \operatorname{sign}{\left(n \right)}$$
More at x→-oo