$$\lim_{x \to -2^-}\left(- x^{2} + \frac{\left(x + 2\right) \left(x + 3\right)}{4}\right) = -4$$
More at x→-2 from the left$$\lim_{x \to -2^+}\left(- x^{2} + \frac{\left(x + 2\right) \left(x + 3\right)}{4}\right) = -4$$
$$\lim_{x \to \infty}\left(- x^{2} + \frac{\left(x + 2\right) \left(x + 3\right)}{4}\right) = -\infty$$
More at x→oo$$\lim_{x \to 0^-}\left(- x^{2} + \frac{\left(x + 2\right) \left(x + 3\right)}{4}\right) = \frac{3}{2}$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(- x^{2} + \frac{\left(x + 2\right) \left(x + 3\right)}{4}\right) = \frac{3}{2}$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(- x^{2} + \frac{\left(x + 2\right) \left(x + 3\right)}{4}\right) = 2$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(- x^{2} + \frac{\left(x + 2\right) \left(x + 3\right)}{4}\right) = 2$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(- x^{2} + \frac{\left(x + 2\right) \left(x + 3\right)}{4}\right) = -\infty$$
More at x→-oo