Mister Exam

Other calculators:


-x^2/2+cos(x)

Limit of the function -x^2/2+cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  2          \
     |-x           |
 lim |---- + cos(x)|
x->0+\ 2           /
$$\lim_{x \to 0^+}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right)$$
Limit((-x^2)/2 + cos(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = -\infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = - \frac{1}{2} + \cos{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = - \frac{1}{2} + \cos{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
     /  2          \
     |-x           |
 lim |---- + cos(x)|
x->0+\ 2           /
$$\lim_{x \to 0^+}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right)$$
1
$$1$$
= 1.0
     /  2          \
     |-x           |
 lim |---- + cos(x)|
x->0-\ 2           /
$$\lim_{x \to 0^-}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right)$$
1
$$1$$
= 1.0
= 1.0
Numerical answer [src]
1.0
1.0
The graph
Limit of the function -x^2/2+cos(x)