$$\lim_{x \to 0^-}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = -\infty$$
More at x→oo$$\lim_{x \to 1^-}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = - \frac{1}{2} + \cos{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = - \frac{1}{2} + \cos{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\left(-1\right) x^{2}}{2} + \cos{\left(x \right)}\right) = -\infty$$
More at x→-oo