Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of n*(1+(1+n)^2)/((1+n)*(1+n^2))
Limit of -2+|-2+x|/x
Limit of (1+x^2+9*x)/(-5+2*x+7*x^2)
Limit of (-9+x^2)/(-3-8*x+3*x^2)
Integral of d{x}
:
-x*exp(-x)
Identical expressions
-x*exp(-x)
minus x multiply by exponent of ( minus x)
-xexp(-x)
-xexp-x
Similar expressions
-x*exp(x)
(-1-x)*exp(-x)
x*exp(-x)
Limit of the function
/
-x*exp(-x)
Limit of the function -x*exp(-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ -x\ lim \-x*e / x->-oo
lim
x
→
−
∞
(
−
x
e
−
x
)
\lim_{x \to -\infty}\left(- x e^{- x}\right)
x
→
−
∞
lim
(
−
x
e
−
x
)
Limit((-x)*exp(-x), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-200000
200000
Plot the graph
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
−
∞
(
−
x
e
−
x
)
=
∞
\lim_{x \to -\infty}\left(- x e^{- x}\right) = \infty
x
→
−
∞
lim
(
−
x
e
−
x
)
=
∞
lim
x
→
∞
(
−
x
e
−
x
)
=
0
\lim_{x \to \infty}\left(- x e^{- x}\right) = 0
x
→
∞
lim
(
−
x
e
−
x
)
=
0
More at x→oo
lim
x
→
0
−
(
−
x
e
−
x
)
=
0
\lim_{x \to 0^-}\left(- x e^{- x}\right) = 0
x
→
0
−
lim
(
−
x
e
−
x
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
−
x
e
−
x
)
=
0
\lim_{x \to 0^+}\left(- x e^{- x}\right) = 0
x
→
0
+
lim
(
−
x
e
−
x
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
−
x
e
−
x
)
=
−
1
e
\lim_{x \to 1^-}\left(- x e^{- x}\right) = - \frac{1}{e}
x
→
1
−
lim
(
−
x
e
−
x
)
=
−
e
1
More at x→1 from the left
lim
x
→
1
+
(
−
x
e
−
x
)
=
−
1
e
\lim_{x \to 1^+}\left(- x e^{- x}\right) = - \frac{1}{e}
x
→
1
+
lim
(
−
x
e
−
x
)
=
−
e
1
More at x→1 from the right
The graph