Mister Exam

Other calculators:


-2/x

Limit of the function -2/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-2 \
 lim |---|
x->oo\ x /
limx(2x)\lim_{x \to \infty}\left(- \frac{2}{x}\right)
Limit(-2/x, x, oo, dir='-')
Detail solution
Let's take the limit
limx(2x)\lim_{x \to \infty}\left(- \frac{2}{x}\right)
Let's divide numerator and denominator by x:
limx(2x)\lim_{x \to \infty}\left(- \frac{2}{x}\right) =
limx((1)21x1)\lim_{x \to \infty}\left(\frac{\left(-1\right) 2 \frac{1}{x}}{1}\right)
Do Replacement
u=1xu = \frac{1}{x}
then
limx((1)21x1)=limu0+(2u)\lim_{x \to \infty}\left(\frac{\left(-1\right) 2 \frac{1}{x}}{1}\right) = \lim_{u \to 0^+}\left(- 2 u\right)
=
0=0- 0 = 0

The final answer:
limx(2x)=0\lim_{x \to \infty}\left(- \frac{2}{x}\right) = 0
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-5050
Other limits x→0, -oo, +oo, 1
limx(2x)=0\lim_{x \to \infty}\left(- \frac{2}{x}\right) = 0
limx0(2x)=\lim_{x \to 0^-}\left(- \frac{2}{x}\right) = \infty
More at x→0 from the left
limx0+(2x)=\lim_{x \to 0^+}\left(- \frac{2}{x}\right) = -\infty
More at x→0 from the right
limx1(2x)=2\lim_{x \to 1^-}\left(- \frac{2}{x}\right) = -2
More at x→1 from the left
limx1+(2x)=2\lim_{x \to 1^+}\left(- \frac{2}{x}\right) = -2
More at x→1 from the right
limx(2x)=0\lim_{x \to -\infty}\left(- \frac{2}{x}\right) = 0
More at x→-oo
Rapid solution [src]
0
00
The graph
Limit of the function -2/x