Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-exp(-x)+exp(x))/(exp(x)+exp(-x))
Limit of ((3+5*x)/(-2+4*x))^(1+3*x)
Limit of (3+3*x^3+5*x+5*x^2)/(-1+x^2)
Limit of (3-x^2+5*x)/(4*x^7+81*x)
Integral of d{x}
:
-3*x^2
Graphing y =
:
-3*x^2
Identical expressions
- three *x^ two
minus 3 multiply by x squared
minus three multiply by x to the power of two
-3*x2
-3*x²
-3*x to the power of 2
-3x^2
-3x2
Similar expressions
3*x^2
5-3*x^2+4*x^3
2*y^4+x*y^3-3*x^2*y^2
(4+x^5-3*x^2)/(2+x^2+x^4)
(4+x^3-3*x^2)/(1+x^5)
Limit of the function
/
-3*x^2
Limit of the function -3*x^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2\ lim \-3*x / x->oo
$$\lim_{x \to \infty}\left(- 3 x^{2}\right)$$
Limit(-3*x^2, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(- 3 x^{2}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(- 3 x^{2}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{\left(-1\right) \frac{1}{3} \frac{1}{x^{2}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\left(-1\right) \frac{1}{3} \frac{1}{x^{2}}} = \lim_{u \to 0^+}\left(- \frac{3}{u^{2}}\right)$$
=
$$- \frac{3}{0} = -\infty$$
The final answer:
$$\lim_{x \to \infty}\left(- 3 x^{2}\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- 3 x^{2}\right) = -\infty$$
$$\lim_{x \to 0^-}\left(- 3 x^{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- 3 x^{2}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- 3 x^{2}\right) = -3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- 3 x^{2}\right) = -3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- 3 x^{2}\right) = -\infty$$
More at x→-oo
The graph